Notes on p-adic numbers

نویسنده

  • Stephen William Semmes
چکیده

as one can check using induction on l. The usual absolute value function |x| satisfies these conditions with the ordinary triangle inequality (4). If N(x) = 0 when x = 0 and N(x) = 1 when x 6= 0, then N(x) satisfies these conditions with the ultrametric version of the triangle inequality. For each prime number p, the p-adic absolute value of a rational number x is denoted |x|p and defined by |x|p = 0 when x = 0, and |x|p = p when x is equal to p times a ratio of nonzero integers, neither of which is divisible by p. One can check that |x|p satisfies these conditions with the ultrametric version of the triangle inequality. Roughly speaking, this says that x+ y has at least j factors of p when x and y have at least j factors of p.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

p-adic Shearlets

The field $Q_{p}$ of $p$-adic numbers is defined as the completion of the field of the rational numbers $Q$ with respect to the  $p$-adic norm $|.|_{p}$. In this paper, we study the continuous and discrete $p-$adic shearlet systems on $L^{2}(Q_{p}^{2})$. We also suggest discrete $p-$adic shearlet frames. Several examples are provided.

متن کامل

Computations with p-adic numbers

This document contains the notes of a lecture I gave at the “Journées Nationales du Calcul Formel” (JNCF) on January 2017. The aim of the lecture was to discuss low-level algorithmics for p-adic numbers. It is divided into two main parts: first, we present various implementations of p-adic numbers and compare them and second, we introduce a general framework for studying precision issues and ap...

متن کامل

$p$-adic Dual Shearlet Frames

We introduced the continuous and discrete $p$-adic shearlet systems. We restrict ourselves to a brief description of the $p$-adic theory and shearlets in real case. Using the group $G_p$ consist of all $p$-adic numbers that all of its elements have a square root, we defined the continuous $p$-adic shearlet system associated with $L^2left(Q_p^{2}right)$. The discrete $p$-adic shearlet frames for...

متن کامل

Representations of Reductive Groups

This course consists of two parts. In the first we will study representations of reductive groups over local non-archimedian fields [ such as Qp and Fq((s))]. In this part I’ll closely follow the notes of the course of J.Bernstein. Moreover I’ll often copy big chanks from these notes. In the second the representations of reductive groups over 2-dimensional local fields [ such as Qp((s))]. In th...

متن کامل

ar X iv : m at h - ph / 0 01 20 19 v 3 2 3 Fe b 20 01 Wavelet analysis as a p – adic spectral analysis

Wavelet analysis as a p–adic spectral analysis Abstract New orthonormal basis of eigenfunctions for the Vladimirov operator of p–adic fractional derivation is constructed. The map of p–adic numbers onto real numbers (p–adic change of variable) is considered. p–Adic change of variable maps the Haar measure on p–adic numbers onto the Lebesgue measure on the positive semiline. p–Adic change of var...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005